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Lagrangian studies of plasma wave interactions I1 

T J M Boyd and J G Turner? 
Department of Applied Mathematics. University of Wales, UCNW, Bangor, UK 

MS received 16 August 1972 

Abstract. The lagrangian approach described in part I is used to  examine the interaction of 
positive and negative energy waves. The explosive interaction between two positive ion 
acoustic waves and a negative energy Bernstein mode is discussed and a growth rate for the 
instability calculated using the lagrangian method. 

1. Introduction 

Low (1958) first drew attention to the possible merits of a lagrangian formulation of the 
Vlasov equation in tackling problems in plasma physics but observed that this formula- 
tion involved as much algebraic complication in producing dispersion relations for 
plasma oscillations and hydromagnetic waves as the conventional approach. It was 
left to Suramlishvili (1964, 1965, 1967) and Vedenov (1967) to develop this approach 
to study three- and four-plasmon interaction processes and in these nonlinear develop- 
ments the lagrangian formulation offers very real computational advantages over the 
alternate method starting from the Maxwell-Vlasov equations. These studies of wave- 
wave interactions are discussed in a quantum mechanical formulation which has only 
become popular outside the Soviet Union in recent years with the translation of the work 
by Tsytovich (1970) and the excellent review paper by Harris (1969). The lagrangian 
approach to problems involving nonlinear dispersive waves was developed independently 
by Whitham in a fluid mechanics context and from this starting point several authors 
(Dougherty 1970, Dewar 1970) have extended Whitham’s ideas to hydromagnetics and 
plasma dynamics. Others (Galloway and Kim 1971, Boyd and Turner 1972, to be 
referred to as I) have used Low’s Lagrangian for a warm plasma to discuss various 
wave-wave interactions. Galloway and Kim considered the nonlinear coupling between 
three colinearly-propagating electrostatic waves in a warm plasma while in I the non- 
linear interaction of transverse waves to produce plasma oscillations and of three 
electromagnetic waves were used as illustrations of the method. Further examples are 
given by Turner (1972). 

In this paper we examine the interaction between positive and negative energy waves 
(5  2) and in 5 3 use the lagrangian approach to calculate the growth rate for an explosive 
instability in a warm magnetized plasma. In 5 4 a general discussion of the lagrangian 
approach to studying wave interaction phenomena in warm plasmas is given. 

t Now at Polytechnic of Central London, Department of Mathematics and Computing, London W I M  8JS. 
UK.  
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2. Wave interactions involving negative energy waves 

All waves involved in the interactions discussed in I were positive energy waves. Since 
the total energy of the waves is conserved in each interaction, bounded solutions of the 
coupled mode equations result. However, if the interaction of positive and negative 
energy waves is considered, an instability may result provided certain criteria are met. 
By negative energy waves we mean the following. The energy per unit volume of an 
electrostatic wave travelling in a plasma with dielectric function cL(k, w) is 

(IEl 2 i 8 4  { d/dw(wcL(k, w))}, = ,, 

where E is the electric field amplitude and 0, > 0 is a solution of the dispersion relation 
cL(k, w) = 0. Hence if there exist waves in the plasma such that 

these may be described as having negative energy and clearly may only propagate in a 
dielectric medium. 

In interactions between positive and negative energy waves it may happen that the 
negative energy modes lose energy to the positive energy modes and this transfer of 
energy results in an increase in the absolute value of the negative energy and a corres- 
ponding gain in energy for the positive energy modes. Thus the amplitudes of the in- 
teracting waves all grow with time, and the system of waves is unstable. The amplitudes 
of the interacting waves become infinite after a finite time and such an instability is 
known as an explosive instability (Sagdeev and Galeev 1969). 

The total energy of the interacting waves is still constant so that the system though 
unstable in the nonlinear regime is linearly stable. 

Consider an interacting triad of waves governed by synchronism conditions 

w ,+w,  = w3, k1+k2 = k3 (1) 

E ,  = T,,E,E,* ( 2 )  

with w, > 0 (j = 1,2,3). The energy density associated with wave n is given by 
A A  

where E,, is the electric field amplitude of wave n, so that the sign of the energy will be 
determined by the sign of r,. From I equation (1 )  together with the definitions of 
and A,, for time variation only, the coupled mode equations are 

Defining 

together with the signature S,, = i 1 where S,, = rn/lrnl, the coupled-mode equations 
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become 

Thus negative energy waves will be characterized by negative S,. To examine stability 
criteria differentiate (4) once with respect to time to obtain 

d2A,  
__ = ~ 2 ~ ~ , ~ 2 1 ~ 3 / 2 - ~ l ~ , I ~ z 1 2 ~ ~ ,  

a t 2  

Since V 2  2 0 and /AjI2 2 0, we observe that an instability will occur if 

SI = s, = -s, (6) 
in which case the amplitudes of the three waves will all increase with time. It is clear 
from (6) that an instability occurs if the wave with highest frequency has energy differing 
in sign from the two lower frequency waves. The amplitudes of all three waves can grow 
monotonically with time, that is, the modes become explosively unstable. 

Solutions of the coupled-mode equations follow using the standard approach 
(cf Sagdeev and Galeev 1969). Writing 

A,(t) = a,(t) exp{ - i(w,t + $,(NI 
where the amplitudes and phases are a,(t), $,(t) respectively and are both real, the solution 
of the coupled-mode equations leads to two Manley-Rowe relations 

together with 

ala2a3 sin 0 = CJ (8) 

where p1, p,, CJ are constants of integration, and 0 = ($,-$,-I)~). The solution 
for a: may then be shown to be 

where rxl, a,, a 3 ,  are the roots of the bicubic 

The sign @ indicates that for the explosive regime (S, = S ,  = -S3) the plus sign is 
taken, whilst for stable solutions (SI = S, = S,) the minus sign is understood. In the 
case where Q possesses three distinct roots, (0 < a, < CY, < a3) stable solutions for the 
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three wave amplitudes are 

a:(t) = a l + ( a 2 - a 1 ) ~ n Z { T / ( a 3 - a l ) 1 ~ 2 ( t - t O ) ,  y) 

ai ( t )  = a:(O)+ ai(0) - a:(t) 

aT(t) = a:@)+ a:@) - a:(t) 

where 
112 

~ 2 - ~ 1  y =  - 
('3-'1) 

is the modulus of the jacobian elliptic function sn and t o  is a constant. 
For an explosive interaction solutions of the coupled-mode equations are 

a 3 - a 1  a:@) = a,+ sn { ~ ( a ,  - ~ , ) ' ~ ~ ( t ,  - t) ,  y} 

a i ( t )  = a:(t) - &O)+ ai(0) 

a:(t) = &t) - a?$)+ a:@) 

from which it can be seen that a:(t) + CO as t -+ t o ,  so that the amplitudes of the interact- 
ing waves become infinite after a time t o ,  the explosion time, given by 

A nonlinear growth rate yexplosive for the instability may be defined by the reciprocal of 
t o  9 

?explos ive  v(a3 -al)"'. 

Taking r~ = 0 it follows from (10) that a1 = 0 and a3 = p1 = a:. The nonlinear growth 
rate is then 

where €3 denotes the energy density per unit volume in wave 3. 

3. Interaction of positive and negative energy waves in a magnetized plasma 

Equation (14) determines the nonlinear growth rate in terms of the coupling coefficient 
Twc. In this section we apply the lagrangian method to compute yexplosive for a particular 
instability involving the interaction of ion acoustic waves (1,2) with a negative energy 
Bernstein mode (3) so that, from (6), we satisfy the criterion for an explosive instability. 
Electron Bernstein modes only possess negative energy for frequencies in a range 
0 < o < ku, where u0 is a drift velocity of electrons relative to the ions. We consider 
such waves and apply the lagrangian method to obtain first the dispersion relation 
(and hence the rj)  and then compute Twc. 

The variation of LZ2 with respect to Y yields (cf I) 



276 T J A4 Boyd and J G Turner 

where E(' ) ,  B"' represent the first order electric and magnetic fields respectively, Bo 
is the zero order constant magnetic field and ct is the species label. The equations of 
motion for the electrons and ions become 

respectively where 

c' e c' 
B E - + U . V - - - - L ' X B o . -  

c't me ?U 

and we have dropped the superscript from the first order electric field. The solutions 
of (16) and (17) follow immediately from a standard analysis giving 

where 

v,, w, = ( w - M O ) - ' * ( w - X Q ) - '  

a=-- eB0 

U = (rl  cos $, uL sin $, cz )  

nz C 

is the electron cyclotron frequency. We have taken k = ( k ,O ,O) ,  Bo = Bo& The dis- 
persion relation is found by taking the variation of 5Y2 with respect to 4, that is 

The zero order distribution functions are 

and the dispersion relation is 

where = 4nn0q,2,/in,, iL = k2KT,jm,R2 and I, is a modified Bessel function of the 
first kind. Since XF=-ae-i,I,,(i) = 1, the infinite sum in (21) can be transformed and 
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the dispersion relation becomes 

= 0 (22) 1 2e-"I,,(%) 
n =  (w - kc,)2 - n2R2 

-l+e- ' . I ,(L)+(o~-kc,)~ 

where Vf = zcT,/tn,. For plasma parameters such that 3. >> 1, if w - kt., 1: -nR, we 
can approximate the infinite sum by one term so that (22) becomes 

(23) 

where cz = KTe/m, is the ion acoustic speed and i., is the Debye length. Since i >> 1, 
eCibIn(i) - ( 2 n i - l  so that the right hand side of (23) is much less than one. Hence, 
for large 2, the motions of the ion acoustic waves and the Bernstein modes are effectively 
decoupled. It is clear from the definition in 4 2 using (22) that Bernstein modes with 
frequencies in the range 0 < w < kzj, are waves of negative energy. We now consider 
the explosive interaction of two positive energy ion acoustic waves and a negative 
energy Bernstein mode. 

3.1. Calculation ~ j j ' ~ , ~ ~ ~ ~ ~ ~ ~  for  the Bernstein mode-ion acoustic w x e s  triad 

The synchronism conditions for the interaction are 

CO:* + c o y  = I l l : ,  

kiA+ kiA = k! 

with 0 < co! < k:c, and w3 - k3t., Y - nQ. Since 

use of the dispersion relation (22) enables the various r, to be written immediately 

where /3, = exp( - i)I,,(i). 
For three electrostatic modes, the third order Lagrangian T3 is given by 

T 3 z  = - Y z f o a { k  V)'4) 
so that on separating Y and 4 into their wave components 

and space-time averaging (cf I) we find 

(24) 



278 T J M Boyd and J G Turner 

The coupling coefficient r,, may then be determined directly from (27) and I (21, 27c) 
giving 

where V,, is given by V ,  where w + w 3  etc. Retaining the dominant third term of (28) 
and using the dispersion relation to replace the infinite sum in (28) by 2/13;, and con- 
sidering parameters such that kj&, - 1 (i = 1,2) reduces (28) to the simple form 

r,, = i/32n3/2(n0~T,)-’/2. (29) 
Substituting (25), (26) and (29) into (14) gives 

A similar growth rate has been obtained for the interaction between two negative 
energy Bernstein modes (1,2) and an ion acoustic wave (3) where col + w2 = w,, 
k ,  + k ,  = k ,  (Boyd and Turner 1971). It has been suggested that these processes may 
be important in certain situations of practical interest such as collisionless shocks. 
However, a calculation of nonlinear wave interactions based on the well defined phase 
approach is not likely to provide a valid description of phenomena in the turbulent 
plasma found in a collisionless shock. For such plasmas a random phase approach 
is preferable and, as one would expect, this gives a smaller growth rate, proportional to 
(8 3/no IC re) rather than (8 3/n OIC T,) I 2 .  

Growth rates such as (30) may, however, be of interest in themselves if experiments 
on these interactions were possible. At present there appears to be little, if any, labora- 
tory evidence for explosive instabilities. There is of course a growing body of experimen- 
tal data on wave-wave interactions. For example the decay of a large amplitude Bern- 
stein mode into an ion acoustic wave and a second Bernstein mode? has been observed 
by Keen and Fletcher (1971). 

4. Discussion 

In this paper and in I we have had the restricted aim of examining the value of a lagrangian 
approach in wave-wave interactions in plasmas. The lagrangian density 9’ was de- 
veloped in a perturbation series describing the linear wave spectrum (YJ, three-wave 
interactions (9,)’ four-wave interactions (Y4) etc. At the linear stage J Pz du = 0 (the 
bar denoting the space-time averaging described in I) gives the dispersion relation for 
the waves and, as Low (1958) pointed out, no reduction in algebraic effort is achieved 
by the lagrangian formalism. In the case of nonlinear interactions on the other hand 
there is real gain and the lagrangian method is to be preferred over the perturbation 
theory approach starting from the equations of motion, which has been standard in the 
literature for some time. Until recently this does not appear to have been appreciated 
in plasma physics except for some work by Suramlishvili (1964, 1967) and Vedenov 
(1967) on three- and four-plasmon processes in a quantum mechanical formulation. 

As an example, consider three-plasmon processes in an isotropic plasma in which 
one ion acoustic (s) plasmon and two electron plasma (1) plasmons take part. Starting 

t Twc for this decay is simply obtained by the lagrangian formula (Turner 1972). 
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from the classical Lagrangian Y 3  and introducing second quantization leads to a set of 
kinetic equations for the distribution functions of the 1 plasmons flk  and the s plasmons 

ril = 

Nk : 

W12{ -n1(n3 + 1)(N2+ l ) + ( n ,  + l)n3N2) 

+ W21{-n1(n3+1)N2+(n1$-1)n3(N2+1)} (31) 
where W,, is the probability for the decay l(k,) -+ s(k2)+l(k3) and W,, the probability 
for the combination l(k,)+s(k,) + l(k,). The summation in (31) is taken over wave 
numbers k , ,  k ,  satisfying k ,  = k ,  + k ,  in the first term and k ,  + k ,  = k ,  in the second. 
For the s plasmons 

N 2  = W,,{-N,n,(n,+ 1)+(N,+ l ) ( n , +  l)n,) (32) 

with W,, the probability for the combination s(k2)+1(k1) + l(k,). There is no decay 
contribution in (32) since the frequency conservation relation cannot be satisfied. The 
probabilities in (31) and (32) are expressed in terms of the matrix elements of the 
Lagrangian J 9, du 

n , - l , N , + l , n , + l  

W2, = ti 1 ( n , ,  N,, n, I / p3 dvin,-l, N2- l ,  n3+ 1 

Suramlishvili (1967) has also obtained kinetic equations for three- and four-plasmon 
processes in an anisotropic plasma. 

Thus whether we consider nonlinear wave interactions in the well defined phase 
approximation (as in 4 2) or in the random phase approximation used in deriving the 
kinetic equations (31), (32) the coupling constants or matrix elements for the interactions 
are most simply computed in a lagrangian formulation. It is hardly surprising that a 
method which leads directly to conservation laws provides these coefficients more effi- 
ciently than via the Vlasov-Maxwell equations (cf Rohrlich 1965). 
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